信息与计算科学系

李刚

李刚:男,19782月生于山东省新泰市,理学博士,九三学社社员。现为青岛大学数学与统计学院教授,硕士生导师,青岛大学特聘教授 2018年获青岛大学优秀研究生指导教师荣誉称号。研究兴趣包括:偏微分方程数值计算、计算流体力学。专注于双曲守恒律、平衡律方程的高精度数值方法研究。

学习与进修经历:

2008.92011.6 南京大学数学系计算数学专业,理学博士。

2000.92003.6 厦门大学数学系计算数学专业,理学硕士。

1996.92000.6 曲阜师范大学数学系数学教育专业,理学学士。

工作经历:

2017.11迄今        必威,教授

2012.122017.10     必威,副教授

2005.11—2012.11     必威,讲师

2003.7—2005.10      必威,助教

2017.9.12018.3.1   ***,访问学者

指导的研究生名单:

年级

硕士研究生

2014

王臻臻(获研究生国家奖学金

韩笑

2015

姚中华,刘雨

2016

于海燕

2017

王秀芳(获研究生国家奖学金

2018

李姣姣(获研究生国家奖学金

2019

莹娟

2020

威,陈子铭

2021

志壮,周翔宇

 

主持的科研项目:

序号

名称

项目来源

负责人

执行

期限

资助

金额

进展

情况

1

数值天气预报中可压缩流体的高效保正间断Galerkin方法

国家自然科学基金

面上项目

李刚

2018.1-

2021.12

48

结题

2

浅水中污染物模型的保正WENO格式及其快速算法 No. 11201254

国家自然科学基金

青年项目

李刚

2013.1-2015.12

 

22

结题

3

污染物输运模型的高精度数值方法研究(No. J12LI08

山东省高等学校科技计划项目

李刚

2012.5-2014.12

5

结题

参与的科研项目:

序号

名称

项目来源

职责

执行

期限

资助

金额

进展

情况

1

基于数据同化的流域尺度土壤水/地下水流耦合的数值模拟(No. 41171183

国家自然科学基金

面上项目

 

学术骨干

2/8

 

2012.1-2015.12

 

56

 

结题

 

2

不规则横截面明渠流的高效保正ADER-DG 方法(ZR2021MA072)

山东省自然科学基金委员

学术骨干

2/6

 

2022.1-2024.12

 

9

在研

主要学术论文:

[1] G. LiJ. Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics  229 (2010) 8105-9129. (二区SCI检索,影响因子: 2.369)

[2] C. Lu, G. Li. Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. Numerical Mathematics: Theory, Methods and Applications  4 (2011) 505-524. (SCI检索, 影响因子: 0.714)

[3] G. Li, C. Lu, J. Qiu. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. Journal of Scientific Computing  51 (2012) 527-559. (二区SCI检索,影响因子: 1.7)  

[4] G. Li(*), J.M. Gao, Q.H. Liang. A well-balanced weighted essentially non-oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical Methods in Fluids 71 (2013) 1566-1587. (四区SCI检索, 影响因子: 1.244)

[5] G. Li J. Qiu. Hybrid WENO schemes with different indicators on curvilinear grids. Advances in Computational Mathematics 40 (2014) 747-772. (二区SCI检索, 影响因子: 1.316)

[6] G. Li(*), V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations. Computers & Fluids 99 (2014) 182-189. (三区SCI检索, 影响因子: 2.313)

[7] G. Li(*), V. Caleffi, Z.K. Qi. A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation 265 (2015) 1-16. (二区SCI检索, 影响因子: 1.738)  

[8] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing 67 (2016) 493-513. (二区SCI检索, 影响因子: 1.899)

[9] G. Li, X.L. Xing. High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics 316 (2016) 145-163. (二区SCI检索, 影响因子: 2.744)

[10] V. Caleffi, A. Valiani, G. Li. A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 40 (2016) 7516-7531. (一区SCI检索, 影响因子: 2.350)

[11] Z.Z. Wang, G. Li(*), O. Delestre. Well-balanced finite difference WENO schemes for the blood flow model. International Journal for Numerical Methods in Fluids, 82 (2016) 607-622. (四区SCI检索, 影响因子: 1.652)

[12] X. Han, G. Li(*). Well-balanced finite difference WENO schemes for the Ripa model. Computers & Fluids, 134-135 (2016) 1-10. (三区SCI检索, 影响因子: 2.313)

[13] Z.H. Yao, G. Li(*), J.M. Gao.  A high order well-balanced finite volume WENO scheme for the blood flow model in arteries. East Asian Journal on Applied Mathematics 7(4) (2017) 852-866. (四区SCI检索影响因子: 0.434)

[14] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics 352 (2018) 445-462. (二区SCI检索, 影响因子: 2.744)

[15]S.G. Qian, G. Li, X.Q. Lv, F.J. Shao. An efficient high order well-balanced finite difference WENO scheme for the blood flow model. Advances in Applied Mathematics and Mechanics 10(1) (2018) 22-40. (四区SCI检索, 影响因子: 0.763)

[16] S.G. Qian, Y. Liu, G. Li(*), L. Yuan. High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields. Applied Mathematics and Computation 329(15) (2018) 23-37. (二区SCI检索, 影响因子: 1.738)  

[17] G. Li(*), O. Delestre, L. Yuan. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids 86(7) (2018) 491-508. (四区SCI检索, 影响因子: 1.652)

[18] G. Li,  Y.L. Xing.   Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics with Applications 75(6) (2018) 2071-2085. (二区SCI检索, 影响因子: 2.434)

[19] S.G. Qian, G. Li, F.J. Shao, Y.L. Xing. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 115 (2018) 172-184. (二区SCI检索, 影响因子: 3.221)

[20] G. Li(*), L.N. Song, J.M. Gao. High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 340 (2018) 546-560. (二区SCI检索影响因子: 1.357)

[21]S.G. Qian, G. Li(*), F.J. Shao, Q. Niu. Well-balanced central WENO schemes for the sediment transport model in shallow water. Computational Geosciences, 22(3) (2018) 763-773. (四区SCI检索影响因子: 0.434)  

[22] S.G. Qian, F.J. Shao, G. Li(*). High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics 37(5) (2018) 5775-5794. (SCI检索影响因子: 0.863)

[23] X.F. Wang, H.Y. Yu, G. Li(*), J.M. Gao. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions   Applied Mathematics and Computation 359 (2019) 132-147. (二区SCI检索, 影响因子: 1.738)  

[24]X.F. Wang, G. Li(*),S.G. Qian, J.J. Li, Z. Wang. High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation 363 (2019) 124587. (SCI检索, 影响因子: 3.092)

[25] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao,  Q. Niu. A high-order well-balanced discontinuous Galerkin method based on the hydrostatic reconstruction for the Ripa model. Advances in Applied Mathematics and Mechanics 12 (6) (2020)  1416-1437.

[26] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations. Advances in Applied Mathematics and Mechanics 13(4) (2021) 827-849.

[27] G. Li, J.J. Li, S.G. Qian, J.M. Gao. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation 395(15) (2021) 125848.

[28] Y.J. Zhang, G. Li, S.G. Qian, J.M.  Gao. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Computational and Applied Mathematics  40 (2021) 139.

联系方式:

办公地点:青岛市市南区宁夏路308号,青岛大学浮山校区励行楼(西七教)222

电话:  15215322338

QQ号: 158043650

E-mailgangli1978@163.com

李刚:男,19782月生于山东省新泰市,理学博士,九三学社社员。现为青岛大学数学与统计学院教授,硕士生导师,青岛大学特聘教授 2018年获青岛大学优秀研究生指导教师荣誉称号。研究兴趣包括:偏微分方程数值计算、计算流体力学。专注于双曲守恒律、平衡律方程的高精度数值方法研究。

学习与进修经历:

2008.92011.6 南京大学数学系计算数学专业,理学博士。

2000.92003.6 厦门大学数学系计算数学专业,理学硕士。

1996.92000.6 曲阜师范大学数学系数学教育专业,理学学士。

工作经历:

2017.11迄今        必威,教授

2012.122017.10     必威,副教授

2005.11—2012.11     必威,讲师

2003.7—2005.10      必威,助教

2017.9.12018.3.1   美国俄亥俄州立大学数学系,访问学者

指导的研究生名单:

年级

硕士研究生

2014

王臻臻(获研究生国家奖学金

韩笑

2015

姚中华,刘雨

2016

于海燕

2017

王秀芳(获研究生国家奖学金

2018

李姣姣(获研究生国家奖学金

2019

莹娟

2020

威,陈子铭

2021

志壮,周翔宇

 

主持的科研项目:

序号

名称

项目来源

负责人

执行

期限

资助

金额

进展

情况

1

数值天气预报中可压缩流体的高效保正间断Galerkin方法

国家自然科学基金

面上项目

李刚

2018.1-

2021.12

48

结题

2

浅水中污染物模型的保正WENO格式及其快速算法 No. 11201254

国家自然科学基金

青年项目

李刚

2013.1-2015.12

 

22

结题

3

污染物输运模型的高精度数值方法研究(No. J12LI08

山东省高等学校科技计划项目

李刚

2012.5-2014.12

5

结题

参与的科研项目:

序号

名称

项目来源

职责

执行

期限

资助

金额

进展

情况

1

基于数据同化的流域尺度土壤水/地下水流耦合的数值模拟(No. 41171183

国家自然科学基金

面上项目

 

学术骨干

2/8

 

2012.1-2015.12

 

56

 

结题

 

2

不规则横截面明渠流的高效保正ADER-DG 方法(ZR2021MA072)

山东省自然科学基金委员

学术骨干

2/6

 

2022.1-2024.12

 

9

在研

主要学术论文:

[1] G. LiJ. Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics  229 (2010) 8105-9129. (二区SCI检索,影响因子: 2.369)

[2] C. Lu, G. Li. Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. Numerical Mathematics: Theory, Methods and Applications  4 (2011) 505-524. (SCI检索, 影响因子: 0.714)

[3] G. Li, C. Lu, J. Qiu. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. Journal of Scientific Computing  51 (2012) 527-559. (二区SCI检索,影响因子: 1.7)  

[4] G. Li(*), J.M. Gao, Q.H. Liang. A well-balanced weighted essentially non-oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical Methods in Fluids 71 (2013) 1566-1587. (四区SCI检索, 影响因子: 1.244)

[5] G. Li J. Qiu. Hybrid WENO schemes with different indicators on curvilinear grids. Advances in Computational Mathematics 40 (2014) 747-772. (二区SCI检索, 影响因子: 1.316)

[6] G. Li(*), V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations. Computers & Fluids 99 (2014) 182-189. (三区SCI检索, 影响因子: 2.313)

[7] G. Li(*), V. Caleffi, Z.K. Qi. A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation 265 (2015) 1-16. (二区SCI检索, 影响因子: 1.738)  

[8] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing 67 (2016) 493-513. (二区SCI检索, 影响因子: 1.899)

[9] G. Li, X.L. Xing. High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics 316 (2016) 145-163. (二区SCI检索, 影响因子: 2.744)

[10] V. Caleffi, A. Valiani, G. Li. A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 40 (2016) 7516-7531. (一区SCI检索, 影响因子: 2.350)

[11] Z.Z. Wang, G. Li(*), O. Delestre. Well-balanced finite difference WENO schemes for the blood flow model. International Journal for Numerical Methods in Fluids, 82 (2016) 607-622. (四区SCI检索, 影响因子: 1.652)

[12] X. Han, G. Li(*). Well-balanced finite difference WENO schemes for the Ripa model. Computers & Fluids, 134-135 (2016) 1-10. (三区SCI检索, 影响因子: 2.313)

[13] Z.H. Yao, G. Li(*), J.M. Gao.  A high order well-balanced finite volume WENO scheme for the blood flow model in arteries. East Asian Journal on Applied Mathematics 7(4) (2017) 852-866. (四区SCI检索影响因子: 0.434)

[14] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics 352 (2018) 445-462. (二区SCI检索, 影响因子: 2.744)

[15]S.G. Qian, G. Li, X.Q. Lv, F.J. Shao. An efficient high order well-balanced finite difference WENO scheme for the blood flow model. Advances in Applied Mathematics and Mechanics 10(1) (2018) 22-40. (四区SCI检索, 影响因子: 0.763)

[16] S.G. Qian, Y. Liu, G. Li(*), L. Yuan. High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields. Applied Mathematics and Computation 329(15) (2018) 23-37. (二区SCI检索, 影响因子: 1.738)  

[17] G. Li(*), O. Delestre, L. Yuan. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids 86(7) (2018) 491-508. (四区SCI检索, 影响因子: 1.652)

[18] G. Li,  Y.L. Xing.   Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics with Applications 75(6) (2018) 2071-2085. (二区SCI检索, 影响因子: 2.434)

[19] S.G. Qian, G. Li, F.J. Shao, Y.L. Xing. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 115 (2018) 172-184. (二区SCI检索, 影响因子: 3.221)

[20] G. Li(*), L.N. Song, J.M. Gao. High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 340 (2018) 546-560. (二区SCI检索影响因子: 1.357)

[21]S.G. Qian, G. Li(*), F.J. Shao, Q. Niu. Well-balanced central WENO schemes for the sediment transport model in shallow water. Computational Geosciences, 22(3) (2018) 763-773. (四区SCI检索影响因子: 0.434)  

[22] S.G. Qian, F.J. Shao, G. Li(*). High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics 37(5) (2018) 5775-5794. (SCI检索影响因子: 0.863)

[23] X.F. Wang, H.Y. Yu, G. Li(*), J.M. Gao. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions   Applied Mathematics and Computation 359 (2019) 132-147. (二区SCI检索, 影响因子: 1.738)  

[24]X.F. Wang, G. Li(*),S.G. Qian, J.J. Li, Z. Wang. High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation 363 (2019) 124587. (SCI检索, 影响因子: 3.092)

[25] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao,  Q. Niu. A high-order well-balanced discontinuous Galerkin method based on the hydrostatic reconstruction for the Ripa model. Advances in Applied Mathematics and Mechanics 12 (6) (2020)  1416-1437.

[26] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations. Advances in Applied Mathematics and Mechanics 13(4) (2021) 827-849.

[27] G. Li, J.J. Li, S.G. Qian, J.M. Gao. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation 395(15) (2021) 125848.

[28] Y.J. Zhang, G. Li, S.G. Qian, J.M.  Gao. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Computational and Applied Mathematics  40 (2021) 139.

联系方式:

办公地点:青岛市市南区宁夏路308号,青岛大学浮山校区励行楼(西七教)222

电话:  15215322338

QQ号: 158043650

E-mailgangli1978@163.com

版权所有:必威·BETWAY(西汉姆联)官方网站 地址:青岛市宁夏路308号 邮编:266071 电话:(0532)85953522  85953660

  COPYRIGHT infungroup.com All Rights Reserved.