李刚:男,1978年2月生于山东省新泰市,理学博士,九三学社社员。现为青岛大学数学与统计学院教授,硕士生导师,青岛大学特聘教授, 2018年获青岛大学优秀研究生指导教师荣誉称号。研究兴趣包括:偏微分方程数值计算、计算流体力学。专注于双曲守恒律、平衡律方程的高精度数值方法研究。
学习与进修经历:
2008.9—2011.6 南京大学数学系计算数学专业,理学博士。
2000.9—2003.6 厦门大学数学系计算数学专业,理学硕士。
1996.9—2000.6 曲阜师范大学数学系数学教育专业,理学学士。
工作经历:
2017.11—迄今 必威,教授
2012.12—2017.10 必威,副教授
2005.11—2012.11 必威,讲师
2003.7—2005.10 必威,助教
2017.9.1—2018.3.1 ***,访问学者
指导的研究生名单:
年级 |
硕士研究生 |
2014级 |
王臻臻(获研究生国家奖学金), 韩笑 |
2015级 |
姚中华,刘雨 |
2016级 |
于海燕 |
2017级 |
王秀芳(获研究生国家奖学金) |
2018级 |
李姣姣(获研究生国家奖学金) |
2019级 |
张莹娟 |
2020级 |
郭威,陈子铭 |
2021级 |
张志壮,周翔宇 |
主持的科研项目:
序号 |
名称 |
项目来源 |
负责人 |
执行 期限 |
资助 金额 |
进展 情况 |
1 |
数值天气预报中可压缩流体的高效保正间断Galerkin方法 |
国家自然科学基金 面上项目 |
李刚 |
2018.1- 2021.12 |
48万 |
结题 |
2 |
浅水中污染物模型的保正WENO格式及其快速算法 (No. 11201254) |
国家自然科学基金 青年项目 |
李刚 |
2013.1-2015.12 |
22万 |
结题 |
3 |
污染物输运模型的高精度数值方法研究(No. J12LI08) |
山东省高等学校科技计划项目 |
李刚 |
2012.5-2014.12 |
5万 |
结题 |
参与的科研项目:
序号 |
名称 |
项目来源 |
职责 |
执行 期限 |
资助 金额 |
进展 情况 |
1 |
基于数据同化的流域尺度土壤水/地下水流耦合的数值模拟(No. 41171183) |
国家自然科学基金 面上项目 |
学术骨干 2/8 |
2012.1-2015.12 |
56万 |
结题 |
2 |
不规则横截面明渠流的高效保正ADER-DG 方法(ZR2021MA072) |
山东省自然科学基金委员会 |
学术骨干 2/6 |
2022.1-2024.12 |
9万 |
在研 |
主要学术论文:
[1] G. Li,J. Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics 229 (2010) 8105-9129. (二区SCI检索,影响因子: 2.369)
[2] C. Lu, G. Li. Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. Numerical Mathematics: Theory, Methods and Applications 4 (2011) 505-524. (SCI检索, 影响因子: 0.714)
[3] G. Li, C. Lu, J. Qiu. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. Journal of Scientific Computing 51 (2012) 527-559. (二区SCI检索,影响因子: 1.7)
[4] G. Li(*), J.M. Gao, Q.H. Liang. A well-balanced weighted essentially non-oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical Methods in Fluids 71 (2013) 1566-1587. (四区SCI检索, 影响因子: 1.244)
[5] G. Li, J. Qiu. Hybrid WENO schemes with different indicators on curvilinear grids. Advances in Computational Mathematics 40 (2014) 747-772. (二区SCI检索, 影响因子: 1.316)
[6] G. Li(*), V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations. Computers & Fluids 99 (2014) 182-189. (三区SCI检索, 影响因子: 2.313)
[7] G. Li(*), V. Caleffi, Z.K. Qi. A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation 265 (2015) 1-16. (二区SCI检索, 影响因子: 1.738)
[8] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing 67 (2016) 493-513. (二区SCI检索, 影响因子: 1.899)
[9] G. Li, X.L. Xing. High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics 316 (2016) 145-163. (二区SCI检索, 影响因子: 2.744)
[10] V. Caleffi, A. Valiani, G. Li. A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 40 (2016) 7516-7531. (一区SCI检索, 影响因子: 2.350)
[11] Z.Z. Wang, G. Li(*), O. Delestre. Well-balanced finite difference WENO schemes for the blood flow model. International Journal for Numerical Methods in Fluids, 82 (2016) 607-622. (四区SCI检索, 影响因子: 1.652)
[12] X. Han, G. Li(*). Well-balanced finite difference WENO schemes for the Ripa model. Computers & Fluids, 134-135 (2016) 1-10. (三区SCI检索, 影响因子: 2.313)
[13] Z.H. Yao, G. Li(*), J.M. Gao. A high order well-balanced finite volume WENO scheme for the blood flow model in arteries. East Asian Journal on Applied Mathematics 7(4) (2017) 852-866. (四区SCI检索,影响因子: 0.434)
[14] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics 352 (2018) 445-462. (二区SCI检索, 影响因子: 2.744)
[15]S.G. Qian, G. Li, X.Q. Lv, F.J. Shao. An efficient high order well-balanced finite difference WENO scheme for the blood flow model. Advances in Applied Mathematics and Mechanics 10(1) (2018) 22-40. (四区SCI检索, 影响因子: 0.763)
[16] S.G. Qian, Y. Liu, G. Li(*), L. Yuan. High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields. Applied Mathematics and Computation 329(15) (2018) 23-37. (二区SCI检索, 影响因子: 1.738)
[17] G. Li(*), O. Delestre, L. Yuan. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids 86(7) (2018) 491-508. (四区SCI检索, 影响因子: 1.652)
[18] G. Li, Y.L. Xing. Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics with Applications 75(6) (2018) 2071-2085. (二区SCI检索, 影响因子: 2.434)
[19] S.G. Qian, G. Li, F.J. Shao, Y.L. Xing. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 115 (2018) 172-184. (二区SCI检索, 影响因子: 3.221)
[20] G. Li(*), L.N. Song, J.M. Gao. High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 340 (2018) 546-560. (二区SCI检索,影响因子: 1.357)
[21]S.G. Qian, G. Li(*), F.J. Shao, Q. Niu. Well-balanced central WENO schemes for the sediment transport model in shallow water. Computational Geosciences, 22(3) (2018) 763-773. (四区SCI检索,影响因子: 0.434)
[22] S.G. Qian, F.J. Shao, G. Li(*). High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics 37(5) (2018) 5775-5794. (三区SCI检索,影响因子: 0.863)
[23] X.F. Wang, H.Y. Yu, G. Li(*), J.M. Gao. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions Applied Mathematics and Computation 359 (2019) 132-147. (二区SCI检索, 影响因子: 1.738)
[24]X.F. Wang, G. Li(*),S.G. Qian, J.J. Li, Z. Wang. High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation 363 (2019) 124587. (一区SCI检索, 影响因子: 3.092)
[25] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao, Q. Niu. A high-order well-balanced discontinuous Galerkin method based on the hydrostatic reconstruction for the Ripa model. Advances in Applied Mathematics and Mechanics 12 (6) (2020) 1416-1437.
[26] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations. Advances in Applied Mathematics and Mechanics 13(4) (2021) 827-849.
[27] G. Li, J.J. Li, S.G. Qian, J.M. Gao. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation 395(15) (2021) 125848.
[28] Y.J. Zhang, G. Li, S.G. Qian, J.M. Gao. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Computational and Applied Mathematics 40 (2021) 139.
联系方式:
办公地点:青岛市市南区宁夏路308号,青岛大学浮山校区励行楼(西七教)222室
电话: 15215322338
QQ号: 158043650
E-mail:gangli1978@163.com
李刚:男,1978年2月生于山东省新泰市,理学博士,九三学社社员。现为青岛大学数学与统计学院教授,硕士生导师,青岛大学特聘教授, 2018年获青岛大学优秀研究生指导教师荣誉称号。研究兴趣包括:偏微分方程数值计算、计算流体力学。专注于双曲守恒律、平衡律方程的高精度数值方法研究。
学习与进修经历:
2008.9—2011.6 南京大学数学系计算数学专业,理学博士。
2000.9—2003.6 厦门大学数学系计算数学专业,理学硕士。
1996.9—2000.6 曲阜师范大学数学系数学教育专业,理学学士。
工作经历:
2017.11—迄今 必威,教授
2012.12—2017.10 必威,副教授
2005.11—2012.11 必威,讲师
2003.7—2005.10 必威,助教
2017.9.1—2018.3.1 美国俄亥俄州立大学数学系,访问学者
指导的研究生名单:
年级 |
硕士研究生 |
2014级 |
王臻臻(获研究生国家奖学金), 韩笑 |
2015级 |
姚中华,刘雨 |
2016级 |
于海燕 |
2017级 |
王秀芳(获研究生国家奖学金) |
2018级 |
李姣姣(获研究生国家奖学金) |
2019级 |
张莹娟 |
2020级 |
郭威,陈子铭 |
2021级 |
张志壮,周翔宇 |
主持的科研项目:
序号 |
名称 |
项目来源 |
负责人 |
执行 期限 |
资助 金额 |
进展 情况 |
1 |
数值天气预报中可压缩流体的高效保正间断Galerkin方法 |
国家自然科学基金 面上项目 |
李刚 |
2018.1- 2021.12 |
48万 |
结题 |
2 |
浅水中污染物模型的保正WENO格式及其快速算法 (No. 11201254) |
国家自然科学基金 青年项目 |
李刚 |
2013.1-2015.12 |
22万 |
结题 |
3 |
污染物输运模型的高精度数值方法研究(No. J12LI08) |
山东省高等学校科技计划项目 |
李刚 |
2012.5-2014.12 |
5万 |
结题 |
参与的科研项目:
序号 |
名称 |
项目来源 |
职责 |
执行 期限 |
资助 金额 |
进展 情况 |
1 |
基于数据同化的流域尺度土壤水/地下水流耦合的数值模拟(No. 41171183) |
国家自然科学基金 面上项目 |
学术骨干 2/8 |
2012.1-2015.12 |
56万 |
结题 |
2 |
不规则横截面明渠流的高效保正ADER-DG 方法(ZR2021MA072) |
山东省自然科学基金委员会 |
学术骨干 2/6 |
2022.1-2024.12 |
9万 |
在研 |
主要学术论文:
[1] G. Li,J. Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics 229 (2010) 8105-9129. (二区SCI检索,影响因子: 2.369)
[2] C. Lu, G. Li. Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. Numerical Mathematics: Theory, Methods and Applications 4 (2011) 505-524. (SCI检索, 影响因子: 0.714)
[3] G. Li, C. Lu, J. Qiu. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. Journal of Scientific Computing 51 (2012) 527-559. (二区SCI检索,影响因子: 1.7)
[4] G. Li(*), J.M. Gao, Q.H. Liang. A well-balanced weighted essentially non-oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical Methods in Fluids 71 (2013) 1566-1587. (四区SCI检索, 影响因子: 1.244)
[5] G. Li, J. Qiu. Hybrid WENO schemes with different indicators on curvilinear grids. Advances in Computational Mathematics 40 (2014) 747-772. (二区SCI检索, 影响因子: 1.316)
[6] G. Li(*), V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations. Computers & Fluids 99 (2014) 182-189. (三区SCI检索, 影响因子: 2.313)
[7] G. Li(*), V. Caleffi, Z.K. Qi. A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation 265 (2015) 1-16. (二区SCI检索, 影响因子: 1.738)
[8] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing 67 (2016) 493-513. (二区SCI检索, 影响因子: 1.899)
[9] G. Li, X.L. Xing. High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics 316 (2016) 145-163. (二区SCI检索, 影响因子: 2.744)
[10] V. Caleffi, A. Valiani, G. Li. A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 40 (2016) 7516-7531. (一区SCI检索, 影响因子: 2.350)
[11] Z.Z. Wang, G. Li(*), O. Delestre. Well-balanced finite difference WENO schemes for the blood flow model. International Journal for Numerical Methods in Fluids, 82 (2016) 607-622. (四区SCI检索, 影响因子: 1.652)
[12] X. Han, G. Li(*). Well-balanced finite difference WENO schemes for the Ripa model. Computers & Fluids, 134-135 (2016) 1-10. (三区SCI检索, 影响因子: 2.313)
[13] Z.H. Yao, G. Li(*), J.M. Gao. A high order well-balanced finite volume WENO scheme for the blood flow model in arteries. East Asian Journal on Applied Mathematics 7(4) (2017) 852-866. (四区SCI检索,影响因子: 0.434)
[14] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics 352 (2018) 445-462. (二区SCI检索, 影响因子: 2.744)
[15]S.G. Qian, G. Li, X.Q. Lv, F.J. Shao. An efficient high order well-balanced finite difference WENO scheme for the blood flow model. Advances in Applied Mathematics and Mechanics 10(1) (2018) 22-40. (四区SCI检索, 影响因子: 0.763)
[16] S.G. Qian, Y. Liu, G. Li(*), L. Yuan. High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields. Applied Mathematics and Computation 329(15) (2018) 23-37. (二区SCI检索, 影响因子: 1.738)
[17] G. Li(*), O. Delestre, L. Yuan. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids 86(7) (2018) 491-508. (四区SCI检索, 影响因子: 1.652)
[18] G. Li, Y.L. Xing. Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics with Applications 75(6) (2018) 2071-2085. (二区SCI检索, 影响因子: 2.434)
[19] S.G. Qian, G. Li, F.J. Shao, Y.L. Xing. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 115 (2018) 172-184. (二区SCI检索, 影响因子: 3.221)
[20] G. Li(*), L.N. Song, J.M. Gao. High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 340 (2018) 546-560. (二区SCI检索,影响因子: 1.357)
[21]S.G. Qian, G. Li(*), F.J. Shao, Q. Niu. Well-balanced central WENO schemes for the sediment transport model in shallow water. Computational Geosciences, 22(3) (2018) 763-773. (四区SCI检索,影响因子: 0.434)
[22] S.G. Qian, F.J. Shao, G. Li(*). High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics 37(5) (2018) 5775-5794. (三区SCI检索,影响因子: 0.863)
[23] X.F. Wang, H.Y. Yu, G. Li(*), J.M. Gao. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions Applied Mathematics and Computation 359 (2019) 132-147. (二区SCI检索, 影响因子: 1.738)
[24]X.F. Wang, G. Li(*),S.G. Qian, J.J. Li, Z. Wang. High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation 363 (2019) 124587. (一区SCI检索, 影响因子: 3.092)
[25] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao, Q. Niu. A high-order well-balanced discontinuous Galerkin method based on the hydrostatic reconstruction for the Ripa model. Advances in Applied Mathematics and Mechanics 12 (6) (2020) 1416-1437.
[26] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations. Advances in Applied Mathematics and Mechanics 13(4) (2021) 827-849.
[27] G. Li, J.J. Li, S.G. Qian, J.M. Gao. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation 395(15) (2021) 125848.
[28] Y.J. Zhang, G. Li, S.G. Qian, J.M. Gao. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Computational and Applied Mathematics 40 (2021) 139.
联系方式:
办公地点:青岛市市南区宁夏路308号,青岛大学浮山校区励行楼(西七教)222室
电话: 15215322338
QQ号: 158043650
E-mail:gangli1978@163.com